BIG-OH: BInarization of gradient orientation histograms
نویسندگان
چکیده
a r t i c l e i n f o Extracting local keypoints and keypoint descriptions from images is a primary step for many computer vision and image retrieval applications. In the literature, many researchers have proposed methods for representing local texture around keypoints with varying levels of robustness to photometric and geometric transformations. Gradient-based descriptors such as the Scale Invariant Feature Transform (SIFT) are among the most consistent and robust descriptors. The SIFT descriptor, a 128-element vector consisting of multiple gradient histograms computed from local image patches around a keypoint, is widely considered as the gold standard keypoint descriptor. However, SIFT descriptors require at least 128 bytes of storage per descriptor. Since images are typically described by thousands of keypoints, it may require more space to store the SIFT descriptors for an image than the original image itself. This may be prohibitive in extremely large-scale applications and applications on memory-constrained devices such as tablets and smartphones. In this paper, with the goal of reducing the memory requirements of keypoint descriptors such as SIFT, without affecting their performance, we propose BIG-OH, a simple yet extremely effective method for binary quantization of any descriptor based on gradient orientation histograms. BIG-OH's memory requirements are very small—when it uses SIFT's default parameters for the construction of the gradient orientation histograms, it only requires 16 bytes per descriptor. BIG-OH quantizes gradient orientation histograms by computing a bit vector representing the relative magnitudes of local gradients associated with neighboring orientation bins. In a series of experiments on keypoint matching with different types of keypoint detectors under various photometric and geometric transformations, we find that the quantized descriptor has performance comparable to or better than other descriptors, including BRISK, CARD, BRIEF, D-BRIEF, SQ, and PCA-SIFT. Our experiments also show that BIG-OH is extremely effective for image retrieval, with modestly better performance than SIFT. BIG-OH's drastic reduction in memory requirements , obtained while preserving or improving the image matching and image retrieval performance of SIFT, makes it an excellent descriptor for large image databases and applications running on memory-constrained devices. The problem of finding images that are partly or wholly similar to a query image in a large gallery has long been a central concern of image processing and computer vision researchers. Some of the important applications are image retrieval, video indexing, texture recognition, image classification, and object recognition. Many of the most successful approaches to …
منابع مشابه
Stochastic Image Reconstruction from Local Histograms of Gradient Orientation
Many image processing algorithms rely on local descriptors extracted around selected points of interest. Motivated by privacy issues, several authors have recently studied the possibility of image reconstruction from these descriptors, and proposed reconstruction methods performing local inference using a database of images. In this paper we tackle the problem of image reconstruction from local...
متن کاملBinarization of Document Image
Documents Image Binarization is performed in the preprocessing stage for document analysis and it aims to segment the foreground text from the document background. A fast and accurate document image binarization technique is important for the ensuing document image processing tasks such as optical character recognition (OCR). Though document image binarization has been studied for many years, t...
متن کاملHistogram of Oriented Gradient Based Gist Feature for Building Recognition
We proposed a new method of gist feature extraction for building recognition and named the feature extracted by this method as the histogram of oriented gradient based gist (HOG-gist). The proposed method individually computes the normalized histograms of multiorientation gradients for the same image with four different scales. The traditional approach uses the Gabor filters with four angles an...
متن کاملRepresenting Multiple Orientation in 2D with Orientation Channel Histograms
The channel representation is a simple yet powerful representation of scalars and vectors. It is especially suited for representation of several scalars at the same time without mixing them up. This report is partly intended to serve as a simple illustration of the channel representation. The report shows how the channels can be used to represent multiple orientations in two dimensions. The ide...
متن کاملCategorical fracture orientation modeling: applied to an Iranian oil field
Fracture orientation is a prominent factor in determining the reservoir fluid flow direction in a formation because fractures are the major paths through which fluid flow occurs. Hence, a true modeling of orientation leads to a reliable prediction of fluid flow. Traditionally, various distributions are used for orientation modeling in fracture networks. Although they offer a fairly suitable est...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Image Vision Comput.
دوره 32 شماره
صفحات -
تاریخ انتشار 2014